Amniotic Fluid Stem Cells from EGFP Transgenic Mice Attenuate Hyperoxia-Induced Acute Lung Injury

نویسندگان

  • Shih-Tao Wen
  • Wei Chen
  • Hsiao-Ling Chen
  • Cheng-Wei Lai
  • Chih-Ching Yen
  • Kun-Hsiung Lee
  • Shinn-Chih Wu
  • Chuan-Mu Chen
چکیده

High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs) in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α) and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI), for which efficient treatments are currently unavailable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fetal microchimerism in mouse caerulein-induced pancreatitis model

Objective(s): Fetal microchimerism is the persistence of allogeneic cell population that transfer from the fetus to the mother. The aim of this study was to evaluate the presence of fetal microchimerism in the pancreas of the mouse with acute pancreatitis (AP).Materials and Methods: In this experimental study, female wild-type mice were mated with male EGFP+. AP model was obtained by injection ...

متن کامل

Probucol attenuates hyperoxia-induced lung injury in mice

Hyperoxic lung injury is pathologically characterized by alveolar edema, interlobular septal edema, hyaline membrane disease, lung inflammation, and alveolar hemorrhage. Although the precise mechanism by which hyperoxia causes lung injury is not well defined, oxidative stress, epithelial cell death, and proinflammatory cytokines are thought to be involved. Probucol-a commercially available drug...

متن کامل

Transgenic mice overexpressing peroxiredoxin 6 show increased resistance to lung injury in hyperoxia.

Peroxiredoxin 6 (Prd x 6) is a novel peroxidase enzyme that is expressed at a high level in the lung. We tested the hypothesis that transgenic (Tg) mice overexpressing Prd x 6 would exhibit increased resistance to hyperoxia-induced lung injury. Wild-type and Tg mice were exposed to 100% O(2) and evaluated for survival, lung histopathology, total protein, and nucleated cells in bronchoalveolar l...

متن کامل

Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats

Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI).   Materials ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013